Approcher un compact par des unions de boules ou d'ellipsoïdes, et calcul de dimension de Vapnik-Chervonenkis

Title - HTML
Nom de l'orateur
Claire Brécheteau
Etablissement de l'orateur
LMJL
Date et heure de l'exposé
02-02-2023 - 11:00:00
Lieu de l'exposé
Salle Éole
Résumé de l'exposé

Dans cet exposé, j'expliquerai brièvement comment construire des proxys de la fonction distance à un compact, à partir d'un nuage de points générés sur ce compact, avec du bruit. Ces proxys seront construits à partir d'un critère de type k-means. Leurs sous-niveaux seront des unions de boules ou d'ellipsoïdes.

J'introduirai également la notion géométrique de dimension de Vapnik-Chervonenkis, présenterai son calcul dans le cas particulier de certaines familles d'ellipsoïdes, et son application statistique pour les proxys.

Il s'agit de travaux en cours et de travaux publiés dans : - Claire Brécheteau and Clément Levrard, A k-points-based distance for robust geometric inference. Bernoulli 2020, Vol. 26, No. 4, 3017-3050 - Claire Brécheteau, Robust anisotropic power-functions-based filtrations for clustering. Symposium on Computational Geometry 2020, 23:1-23:15

Concernant la dimension de Vapnik-Chervonenkis, on pourra se référer aux travaux : - Yohji Akama, Kei Irie, Akitoshi Kawamura, Yasutaka Uwano, VC Dimensions of Principal Component Analysis, Discrete Comput Geom (2010) 44: 589–598

comments