Résumé de l'exposé
Symplectic homology is a very useful tool in symplectic topology, but it can be hard to compute explicitly. We will review the definition of this invariant and some of its features. Then, we describe a procedure for computing symplectic homology in terms of certain Gromov-Witten invariants. This method is applicable to a class of manifolds that are obtained by removing, from a closed symplectic manifold, a symplectic hypersurface of codimension 2. This is joint work with Samuel Lisi.
comments