Une promenade vers les algèbres sur des infini-opérades linéaires

Title - HTML

Une promenade vers les algèbres sur des infini-opérades linéaires 
 

Nom de l'orateur
Eric Hoffbeck
Etablissement de l'orateur
LAGA (Villetaneuse - Paris 13)
Date et heure de l'exposé
13-02-2025 - 11:00:00
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Le principe fondamental de la topologie algébrique est d'associer des objets algébriques à des objets de nature géométrique ou topologique. Dans cet exposé, nous commencerons par rappeler rapidement la complexité croissante de ces objets algébriques : des nombres, des groupes, des algèbres associatives, puis différents types d'algèbres de plus en plus complexes. Les opérades sont un outil pour mieux comprendre ces algèbres, et mieux les étudier. Par exemple, la construction bar des opérades et la dualité de Koszul permettent de retrouver les complexes d'homologie (Hochschild, Chevalley-Eilenberg, etc) et des constructions similaires dans des contextes plus modernes. Ceux-ci font souvent intervenir des infini-catégories ou des algèbres à homotopie près. Le but final de l'exposé est de présenter la définition des infini-opérades et de leurs algèbres, et de définir des constructions bar associées.

Ceci est un travail en commun avec Ieke Moerdijk.

comments