On considère un opératreur semiclassique à valeur 2 × 2 matricel, dont
les éléments diagonaux sont des opérateurs de Schrödinger et les éléments
anti-diagonaux sont de petites interactions d’ordre $h$ (paramètre semiclassique). Dans le cas où les trajectoires classiques associées aux opérateurs de Schrödinger se croisent, on voit des phénomènes variées des valeurs propres
et des résonances en limite semiclassique à cause de l’interaction entre les
deux états. Dans l’exposé, nous considérons 3 modèles avec croisement de:
1. deux trajectoires non-captives, qui engendrent des résonances,
les éléments diagonaux sont des opérateurs de Schrödinger et les éléments
anti-diagonaux sont de petites interactions d’ordre $h$ (paramètre semiclassique). Dans le cas où les trajectoires classiques associées aux opérateurs de Schrödinger se croisent, on voit des phénomènes variées des valeurs propres
et des résonances en limite semiclassique à cause de l’interaction entre les
deux états. Dans l’exposé, nous considérons 3 modèles avec croisement de:
1. deux trajectoires non-captives, qui engendrent des résonances,