En 1993, K. Kuperberg construit des exemples lisses et même analytique réels de flots sans points fixes et sans orbites périodiques sur toute variété fermée de dimension 3. Ces exemples sont à ce jour les uniques exemples de flots ayant ces propriétés. Il sont construits à l’aide de pièges. Un piège est une variété à bord et à coins, nous pouvons penser au produit d'un disque de dimension 2 par un intervalle, qui est munie d’un flot dont les orbites peuvent sortir. Il a la propriété de piéger des orbites : il y a des orbites qui rentrent dans le piège et ne ressortent jamais.
Une orbite piégée s’accumule sur un ensemble fermé invariant à l’intérieur du piège, celui-ci doit contenir un ensemble minimal du flot. Je vais présenter certains aspects de l’étude de l’ensemble minimal des exemples de K. Kuperberg. A ma connaissance, celui-ci est le premier ensemble minimal exceptionnel de dimension topologique deux. Les résultats présentés ont été obtenus en collaboration avec Steve Hurder.
comments