Un théorème de Gabriel pour les faisceaux cohérents tordus et groupe de Picard et 2-factorialité des exemples de O'Grady de variétés irréductibles symplectiques

Nom de l'auteur
Perego
Prénom de l'auteur
Arvid
Date de soutenance
Nom du ou des directeurs de thèse
C. Sorger

Cette thèse se compose de deux parties: dans la première on démontre une généralisation du théorème de Gabriel sur les faisceaux cohérents au cas des faisceaux cohérents tordus. Plus précisément, on démontre que tout schéma noethérien X peut être reconstruit à partir de sa catégorie abélienne Coh(X,\alpha) des faisceaux cohérents tordus par un élément \alpha du groupe de Brauer cohomologique de X. Dans la deuxième partie on étudie les deux espaces des modules M{10} et M{6} introduits par O'Grady, qu'il utilise pour obtenir ses deux nouveaux examples de variétés irréductibles symplectiques de dimension 10 et 6 respectivement. On calcule les groupes de Picard de M{10} et M{6}, et on démontre que ces deux variétés ne sont pas localement factorielles, mais 2-factorielles. Ceci est accompli en utilisant les résultats de Rapagnetta sur la cohomologie et la forme de Beauville-Bogomolov de M{10} et M{6}, et en étudiant les propriétés du morphisme de Le Potier dans ces deux cas.