We prove the quilted Floer cochain complexes form A infinity n-modules over the Fukaya category of Lagrangian correspondences. Then we prove that when we restrict the input to mapping cones of product Lagrangians and graphs, the resulting bar-type complex can be identified with bar complex from ordinary Floer theory. As an application we use a family version of quilt unfolding argument to prove two long exact sequences conjectured by Seidel that relates the Lagrangian Floer cohomology of a collection of (possibly intersecting) Lagrangian spheres and the fixed point Floer cohomology of composition of Dehn twists along them.
Séminaire de topologie, géométrie et algèbre
Séminaire de Topologie, Géométrie et Algèbre
Pour toute question relative à l'organisation, merci de contacter Stéphane Guillermou, Fabio Gironella
Vous trouverez ci-dessous les séminaires à venir.
Archives