I will present my recent joint work with J. F. de Bobadilla, proving that a family of isolated hypersurface singularities with constant Milnor number has constant multiplicity. The key idea is to endow the A'Campo model of "radius zero" monodromy with a symplectic structure. More precisely, I will construct a smooth manifold, fibered over an annulus, together with a fiberwise symplectic form such that the following holds. Over the outer circle ("positive radius"), we get the usual Milnor fibration.
Nom de l'orateur
Tomasz Pełka
Etablissement de l'orateur
Basque Center for Applied Mathematics
Lieu de l'exposé
Salle Éole
Date et heure de l'exposé