Séminaire de topologie, géométrie et algèbre

Vous trouverez ci-dessous les séminaires à venir. Cliquez ici pour retrouver l'ensemble des séminaires achevés (archives).

Kontsevich-type recursions for counts of real curves

Nom de l'orateur
Xujia Chen
Etablissement de l'orateur
Stony Brook
Lieu de l'exposé
Date et heure de l'exposé

Kontsevich's recursion, proved by Ruan-Tian in the early 90s, enumerates rational curves in complex surfaces. Welschinger defined invariant signed counts of real rational curves in real surfaces (complex surfaces with a conjugation) in 2003. Solomon interpreted Welschinger's invariants as holomorphic disk counts in 2006 and proposed Kontsevich-type recursions for them in 2007, along with an outline for adapting Ruan-Tian's homotopy style argument to the real setting. For many symplectic fourfolds, these recursions determine all invariants from basic inputs.