La proposition


Références d'introduction:

[A] Segal, Graeme Elliptic cohomology (after Landweber-Stong, Ochanine, Witten, and others).    Sémianire  Bourbaki, Vol. 1987/88.  Astérisque  No. 161-162  (1988), Exp. No. 695, 4, 187--201 (1989).

[B] Segal, Graeme What is an elliptic object?  Elliptic cohomology,  306--317, London Math. Soc. Lecture Note Ser., 342, Cambridge Univ. Press, Cambridge, 2007.
[C] Ochanine, Serge Elliptic genera. In Encyclopedia Mathematica, Suppl. Vol. 1, pages 236-239. Kluwer, 1997.
[D] Ochanine, Serge Elliptic cohomology.In Encyclopedia Mathematica, Suppl. Vol. 1, page 236.Kluwer, 1997.
[E] Ochanine, Serge What is ...  an elliptic genus?  Notices Amer. Math. Soc.  56  (2009),  no. 6, 720--721.


Références de travail:


[1] Charles Thomas,  Elliptic cohomology,The University Series in Mathematics. Kluwer Academic/Plenum Publishers, New York, 1999.
[2] Greenberg master thesis.
[3] Bott, Raoul; Taubes, Clifford On the rigidity theorems of Witten.  J. Amer. Math. Soc.  2  (1989),  no. 1, 137--186.
[4] Hohnholt, M. Kreck,  S. Stolz &  P. Teichner,  Differential forms and 0-dimensional super symmetric field theories.
[5] P. Landweber Elliptic cohomology and modular forms.  Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986),  55--68, Lecture Notes in Math., 1326, Springer, Berlin, 1988.
[6] Ochanine, Serge Sur les genres multiplicatifs définis par des intégrales elliptiques. (French) [On multiplicative genera defined by elliptic integrals]  Topology  26  (1987),  no. 2, 143--151
[7] Landweber, Peter S.; Ravenel, Douglas C.; Stong, Robert E. Periodic cohomology theories defined by elliptic curves.  The Cech centennial (Boston, MA, 1993),  317--337, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995
[8] S. Stolz & P. Teichner, What is an elliptic object?  Topology, geometry and quantum field theory,  247--343,  London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004.