La
proposition
Références
d'introduction:
[A] Segal, Graeme Elliptic cohomology (after Landweber-Stong, Ochanine,
Witten, and others). Sémianire Bourbaki,
Vol.
1987/88.
Astérisque No. 161-162 (1988), Exp. No. 695,
4, 187--201
(1989).
[B]
Segal, Graeme What is an elliptic object? Elliptic
cohomology, 306--317, London Math. Soc. Lecture Note Ser., 342,
Cambridge Univ. Press, Cambridge, 2007.
[C]
Ochanine, Serge Elliptic genera. In Encyclopedia
Mathematica, Suppl.
Vol. 1, pages 236-239. Kluwer, 1997.
[D]
Ochanine, Serge Elliptic cohomology.In Encyclopedia
Mathematica, Suppl.
Vol. 1, page 236.Kluwer, 1997.
[E]
Ochanine, Serge What is ... an elliptic genus? Notices
Amer. Math. Soc. 56 (2009), no. 6, 720--721.
Références de travail:
[1]
Charles Thomas, Elliptic cohomology,The University Series in
Mathematics. Kluwer Academic/Plenum Publishers, New York, 1999.
[2]
Greenberg master thesis.
[3] Bott,
Raoul; Taubes, Clifford On the rigidity theorems of Witten. J.
Amer. Math. Soc. 2 (1989), no. 1, 137--186.
[4] Hohnholt,
M. Kreck, S. Stolz & P. Teichner, Differential
forms and 0-dimensional super symmetric field theories.
[5] P.
Landweber Elliptic cohomology and modular forms. Elliptic curves
and modular forms in algebraic topology (Princeton, NJ, 1986),
55--68, Lecture Notes in Math., 1326, Springer, Berlin, 1988.
[6] Ochanine,
Serge Sur les genres multiplicatifs définis par des
intégrales
elliptiques. (French) [On multiplicative genera defined by elliptic
integrals] Topology 26 (1987), no. 2, 143--151
[7] Landweber,
Peter S.; Ravenel, Douglas C.; Stong, Robert E. Periodic cohomology
theories defined by elliptic curves. The Cech centennial
(Boston,
MA, 1993), 317--337, Contemp. Math., 181, Amer. Math. Soc.,
Providence, RI, 1995
[8] S.
Stolz & P. Teichner, What is an elliptic object? Topology,
geometry and quantum field theory, 247--343, London Math.
Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004.