Séminaire de mathématiques appliquées (archives)

A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion

Nom de l'orateur
Perla El Kettani
Etablissement de l'orateur
Laboratoire de Mathématiques d'Orsay-Université Paris Sud
Lieu de l'exposé
salle Au Val
Date et heure de l'exposé

In this talk, we study a stochastic mass conserved reaction-diffusion equation with a linear or nonlinear diffusion term and an additive noise corresponding to a Q-Brownian motion. We prove the existence and the uniqueness of the weak solution. The proof is based upon the monotonicity method. This is joint work with D.Hilhorst and K.Lee.

Modélisation du dépôts d’aérosols dans l’appareil respiratoire

Nom de l'orateur
Céline Grandmont
Etablissement de l'orateur
INRIA Rocquencourt
Lieu de l'exposé
salle des séminaires
Date et heure de l'exposé

Dans cet exposé nous présenterons des contributions à la fois d’ordre théorique, numérique et allant jusqu’à des comparaisons avec l’expérience, autour de la modélisation du transport et du dépôt de particules. La motivation de ces recherches est l’étude de l’interaction fluide-particules dans le cadre de la respiration. Les sprays thérapeutiques ou les particules polluantes rentrent dans la catégorie des sprays fins et peuvent donc être décrits par des équations mésoscopiques de type cinétiques.

La convergence locale et globale de méthodes de linéarisation pour la résolution numérique des équations paraboliques doublement dégénérées

Nom de l'orateur
Konstantin Brenner
Etablissement de l'orateur
Laboratoire J.A. Dieudonné - Université de Nice Sophia-Antipolis
Lieu de l'exposé
salle des séminaires
Date et heure de l'exposé

Nous nous intéressons à la résolution numérique des équations d'évolution scalaires à diffusion rapide ou lente telles que par exemple l'équation de milieux poreux, l'équation de Richards ou l'équation de Hele-Shaw. Les systèmes non linéaires obtenus en discrétisant telles équations peuvent être difficiles à résoudre. Dans cette exposé je parlerai de divers schémas de linéarisation incluant les variantes de la méthode de Picard et de Newton. Je présenterai les résultats théorique et les expériences numérique concernant les propriétés de convergence locale et globale de ces méthodes.

Water wave modeling

Nom de l'orateur
Georges Sadaka
Etablissement de l'orateur
LAMFA - Université de Picardie Jules Verne
Lieu de l'exposé
salle des séminaires
Date et heure de l'exposé

In this talk, I will present first a mesh generation though a photo and a xyz file, and a new adaptmesh technique applied on a water wave modeling : simplified Boussinesq system of BBM(Benjamin Bona Mahony) type derived by Dimitrios Mitsotakis and the Shallow Water system. I will also present FreeVol++ the code to solve numerically finite volume method on a unstructured grid using with FreeFem++, which is an ongoing work with Frédéric Hecht, Pierre Jolivet and Nicolas Seguin, and give it's first application on the advection 2D equation and on the Shallow Water system with the new adaptmesh