Séminaire de topologie, géométrie et algèbre (archives)

Sur les points translatés des contactomorphismes des espaces lenticulaires

Nom de l'orateur
Simon Allais
Etablissement de l'orateur
IMJ-PRG
Lieu de l'exposé
Salle Éole
Date et heure de l'exposé

En 2011, Sandon montra que les points translatés des contactomorphismes isotopes à l’identité des espaces projectifs réels munis de la forme de contact standard existaient toujours en un nombre supérieur à une quantité liée à la topologie de ces espaces. Elle en conjectura un analogue de la conjecture d’Arnol’d pour les contactomorphismes isotopes à l’identité de variétés de contact quelconques. Dans cet exposé, nous expliquerons cette conjecture et comment l'utilisation de fonctions génératrice permet de la démontrer dans les espaces lenticulaires standard.

Polynômes post-critiquement finis et dynamique arithmétique

Nom de l'orateur
Charles Favre
Etablissement de l'orateur
École Polytechnique
Lieu de l'exposé
Salle Eole
Date et heure de l'exposé

Nous discuterons comment des méthodes adéliques permettent de comprendre la répartition des polynômes post-critiquement finis dans l'espace des paramètres des polynômes complexes de degré fixé.

Pliage de pentagones, surfaces K3, dynamique aléatoire

Nom de l'orateur
Serge Cantat
Etablissement de l'orateur
Université de Rennes
Lieu de l'exposé
Salle Eole
Date et heure de l'exposé

J’expliquerai comment des résultats récents de Brown et Rodriguez-Hertz peuvent être couplés à des techniques de dynamique holomorphe pour étudier un problème issu de la géométrie élémentaire : le pliage aléatoire de pentagones. Cet exposé sera basé sur mes travaux communs avec Romain Dujardin.

Groupe fondamental et isotopies symplectiques de petit flux

Nom de l'orateur
Jean-François Barraud
Etablissement de l'orateur
Institut de mathématiques de Toulouse
Lieu de l'exposé
Salle Eole
Date et heure de l'exposé

La théorie de Floer explique comment l'homologie d'une variété influe sur sa géométrie symplectique, notamment en forçant l'existence de points fixes pour les isotopies Hamiltoniennes. Pour les isotopies symplectiques, H.V. Le et K. Ono (ainsi que M. Damian et A. Gadbled dans le cas Lagrangien) ont généralisé cette construction pour obtenir des résultats similaires dans lesquels l'homologie usuelle est remplacée par l'homologie de Novikov associée au flux de l'isotopie.

Dynamique sauvage pour des flots d'Euler stationnaires

Nom de l'orateur
Anna Florio
Etablissement de l'orateur
IMJ-PRG et CEREMADE
Lieu de l'exposé
Salle Eole
Date et heure de l'exposé

L'évolution d'un fluide idéal en équilibre est décrite par l'équation d'Euler stationnaire. Parmi ses solutions, les champs de vecteurs Beltrami sont les seuls où des phénomènes dynamiquement intéressants peuvent apparaître. Dans un travail en collaboration avec Pierre Berger et Daniel Peralta-Salas, nous montrons que des tangences homoclines et des phénomènes de type Newhouse apparaissent parmi les champs de vecteurs Beltrami. De plus, grâce à la théorie de Gonchenko-Shilnikov-Turaev, nous prouvons l'existence de champs de vecteurs Beltrami universels, i.e.

Caractéristique d'Euler et signature des dégénérescences semi-stables réelles

Nom de l'orateur
Erwan Brugallé
Etablissement de l'orateur
LMJL
Lieu de l'exposé
Salle Éole
Date et heure de l'exposé

Il est intéressant de comparer la caractéristique d'Euler de la partie réelle d'une variété algébrique réelle avec la signature de la variété complexe sous-jacente. Par exemple un théorème d'Itenberg et Bertrand stipule que ces deux quantités sont égales pour les "T-hypersurfaces primitives". Après avoir défini ces dernières, je donnerai une preuve motivique de ce théorème via la fibre proche motivique d'une dégénérescence semi-stable. Cette preuve étend en particulier le théorème originel d'Itenberg et Bertrand aux variétés tropicales non-singulières.

Homologie de factorisation équivariante

Nom de l'orateur
Aleksandar Miladinovic
Etablissement de l'orateur
LMJL
Lieu de l'exposé
Salle Eole
Date et heure de l'exposé

Premièrement, je présenterai la théorie des catégories supérieures paramétrée développée par Barwick, Dotto, Nardin, Shae et Glassman. Je décrirai la catégorie d'infinité G-paramétrée des G-variétés où G est un groupe de Lie compact. Après cela, je donnerai la construction de l'homologie de factorisation G-équivariante. Enfin, nous utiliserons cette construction pour décrire des versions équivariantes de l'homologie de Hochschild.

Géométrie torique quantique

Nom de l'orateur
Antoine Boivin
Etablissement de l'orateur
Université d'Angers
Lieu de l'exposé
Salle Éole
Date et heure de l'exposé

Les variétés toriques sont des variétés algébriques qui sont entièrement déterminées par la donnée combinatoire d'un éventail de cônes rationnels (par rapport à un réseau de $\R^d$) fortement convexes. Cette rationalité fait que ces variétés toriques sont rigides car perturber un peu un réseau peut le faire devenir dense.

Do all 3-manifolds bound definite 4-manifolds?

Nom de l'orateur
Marco Golla
Etablissement de l'orateur
LMJL
Lieu de l'exposé
Salle Eole
Date et heure de l'exposé

Rokhlin proved that each closed oriented 3-manifold bounds a compact smooth 4-manifold, and hence plenty. Among all of these, can we always find one whose intersection form is (semi-)definite? Using Heegaard Floer correction terms and an analysis of short characteristic covectors in bimodular lattices, we give an obstruction for a 3-manifold to bound a definite 4-manifold, and produce some concrete examples. This is joint work with Kyle Larson.

Sutured Legendrian homology, the conormal of braids and a glimpse of TQFT

Nom de l'orateur
Côme Dattin
Etablissement de l'orateur
Uppsala Universitet
Lieu de l'exposé
Salle Eole
Date et heure de l'exposé

The unit conormal construction takes us from the smooth world to the contact world, hence Legendrian invariants of conormals yield invariants of smooth submanifolds. In this talk we will show that, if the conormals of two braids are Legendrian isotopic, then the braids are equivalent. The main tool will be the wrapped sutured homology, an invariant of Legendrians with boundary, and its associated exact sequence. On the way we will sketch the definition of a 2-sutured manifold, and, if time permits, show a glimpse of (some sort of) TQFT.