Nom de l'auteur
Bella
Prénom de l'auteur
Sandra
Date de soutenance
Nom du ou des directeurs de thèse
E. Barbin

Cette thèse essaie de reconstituer l’histoire de la réception du calcul leibnizien dans les milieux savants français (1690-1706). Nous repérons deux lieux : d’abord au sein d’un groupe autour de Malebranche, initié au calcul par Jean Bernoulli, puis à l’Académie des sciences. Dans les deux cas nous mettons en avant les horizons d’attente des acteurs. Alors que cet épisode a été beaucoup étudié en termes de rupture, nous insistons, par une analyse des sources primaires – dont plusieurs inédites – sur le fait que l’appropriation du calcul s’effectue aussi grandement sur le fond de pratiques en usage. Dans la première partie, nous examinons l’héritage mathématique à partir duquel est reçu le calcul de Leibniz par le groupe autour de Malebranche. Cette analyse nous permet de montrer que leur appropriation s’appuie sur des pratiques partagées et non sur un terrain vierge comme on l’a trop souvent supposé. Nos mathématiciens réalisent que l’algorithme différentiel permet de donner une étoffe nouvelle à des notions déjà impliquées dans les méthodes d’invention précédentes. Dans la seconde partie, nous étudions la genèse et la structuration du premier ouvrage de calcul différentiel écrit par l’Hospital et publié en 1696 sous le titre Analyse des infiniment petits pour l’intelligence des courbes. Après cette publication, le calcul devient très présent à l’Académie. Une crise y éclate entre partisans et adversaires du calcul. L’examen de leurs discours, objet de notre troisième partie, permet de préciser les notions telles que celle de différentielle ou de courbe, ainsi que la manière dont il est possible d’interpréter géométriquement les résultats issus des calculs.

comment

Tadayuki Watanabe
Etablissement de l'orateur
Shimane University
Date et heure de l'exposé
Lieu de l'exposé
Salle Éole
Résumé de l'exposé

Kontsevich's characteristic classes for framed smooth homology sphere bundles were defined by Kontsevich as a higher dimensional analogue of Chern-Simons perturbation theory in 3-dimension, developed by himself. In this talk, I will present an application of Kontsevich's characteristic class to a disproof of the 4-dimensional Smale conjecture, which says that the group of self-diffeomorphisms of the 4-sphere has the same homotopy type as the orthogonal group O(5). This leads, for example, to a negative answer to Eliashberg's problem, which asks if the space of compact-support symplectic structures on R^4 is contractible. In proving our result, we give and use a formula for the characteristic numbers for some bundles which counts gradient flow-graphs in the bundles. This is an analogue of K. Fukaya's Morse homotopy for families.

Jonathan Hickman
Etablissement de l'orateur
University of St Andrews
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

I will describe an approach to studying the Kakeya maximal function in high dimensions via the Guth--Katz polynomial partitioning method. Although the approach does not currently produce better bounds than the record set by Katz--Tao, it is rather flexible, provides a lot of interesting structural information and gives rise to some interesting algebraic/geometric problems.

Odysseas Bakas
Etablissement de l'orateur
Stockholm University
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

Motivated by some classical results of Meyer, Pichorides and Zygmund, we present a variant of Yano's extrapolation theorem for analytic Hardy spaces over the torus. Some related questions will also be discussed.

Claire Launay
Etablissement de l'orateur
Université Paris Decartes
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Determinantal point processes are used to model the repulsion in certain sets of points. They capture negative correlations: the more similar two points are, the less likely they are to be sampled simultaneously. Therefore, these processes tend to generate sets of diverse or distant points. Unlike other repulsive processes, these have the advantage of being entirely determined by their kernel and there are exact algorithms to sample them. During this presentation, I will present the determinantal point processes in a general discrete framework and then in the one of the images: a 2D framework, stationary and periodic. We have studied the repulsion properties of such processes, in particular by using shot noise models, properties that are interesting for synthesizing microtextures. I will also present how the determinantal processes can be applied to the sub-sampling of an image in the patch space.

Juho Leppanen
Etablissement de l'orateur
Institut de Mathématiques de Jussieu-CNRS
Date et heure de l'exposé
Lieu de l'exposé
Résumé de l'exposé

Quasistatic dynamical systems (QDS), introduced by Dobbs and Stenlund around 2015, model dynamics that transform slowly over time due to external influences. They are generalizations of conventional dynamical systems and belong to the realm of deterministic non-equilibrium processes.

I will first define QDSs and then give an ergodic theorem, which is needed since the usual theorem of Birkhoff does not apply in the absence of invariant measures. After briefly explaining some applications of the ergodic theorem, I will give results on the statistical properties of a particular QDS in which the evolution of states is described by intermittent Pomeau-Manneville type maps. One of these results is a functional central limit theorem, obtained by solving a well-posed martingale problem, which (in a certain parameter range) describes statistical behavior as a stochastic diffusion process.

Roberto Feola
Etablissement de l'orateur
LMJL
Date et heure de l'exposé
Lieu de l'exposé
Salle des seminaires
Résumé de l'exposé

We consider the gravity water waves system with a periodic one-dimensional interface in infinite depth, and prove a rigorous reduction of these equations to Birkhoff normal form up to degree four. This prove a conjecture of Zakharov-Dyachenko based on the formal Birkhoff integrability of the waver waves Hamiltonian truncated at order four. As a consequence, we also obtain a long-time stability result: periodic perturbations of a flat interface that are of size ε in a sufficiently smooth Sobolev space lead to solutions that remain regular and small up to times of order $\epsilon^{−3}$.