Valentin Samoyeau
Etablissement de l'orateur
Nantes
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

Les inégalités de Strichartz sont des outils puissants pour étudier des équations du type Schrödinger. On les obtient à partir d'estimations de dispersion L^1-L^{\infty}. L'objectif de cet exposé est de présenter une approche unifiée pour démontrer de telles inégalités dans un cadre général. On considère ainsi un espace métrique muni d'une mesure doublante et un opérateur auto-adjoint engendrant un semi-groupe avec de bonnes propriétés. L'idée est de substituer l'estimation L^1-L^{\infty} usuelle à une estimation H^1-BMO mieux adaptée au problème, et de tirer profit du lien entre la dispersion pour l'équation des ondes et pour l'équation de Schrödinger.

Julie Rowlett
Date et heure de l'exposé
Lieu de l'exposé
Salle des Séminaires
Bruno Premoselli
Etablissement de l'orateur
Université de Cergy-Pontoise
Date et heure de l'exposé
Lieu de l'exposé
Salle des Séminaires
Résumé de l'exposé

En relativité générale, les équations de contraintes déterminent les données initiales permettant de résoudre les équations d'Einstein comme un problème d'évolution. La méthode conforme - initiée par Choquet-Bruhat, Lichnerowicz et York - rend ces équations déterminées en les posant sous la forme d'un système d'équations elliptiques non-linéaires (sur)-critiques fortement couplé.

Nous étudierons dans cet exposé des propriété de stabilité de ce système elliptique. La notion de stabilité étudiée ici, définie comme une propriété de dépendance continue de l'ensemble des solutions du système en ses coefficients, se traduit en termes de pertinence physique de la méthode conforme dans la construction d'espace-temps solutions des équations d'Einstein. L'analyse de la stabilité du système des contraintes fait intervenir des techniques fines de blow-up et d'étude des défauts de compacité d'équations elliptiques critiques

Jacques Darné
Date et heure de l'exposé
Lieu de l'exposé
Salle de séminaires
Résumé de l'exposé

On commencera par une introduction à la théorie classique des suites fortement centrales et algèbres de Lie associées sur un groupe G quelconque, en introduisant quelques exemples classiques, dont la filtration d'Andreadakis sur Aut(G). On présentera ensuite dans ce cadre le morphisme de Johnson, qui permet notamment de déterminer IAn^{ab} (= H1(IA_n)). Dans un deuxième temps, On introduira l'algèbre de Magnus, qui permet de faire des calculs sur le groupe libre à partir les développements de Magnus et des applications de Johnson suivant Kawazumi.

Notes

Aurélien Djament
Date et heure de l'exposé
Lieu de l'exposé
Salle de séminaires
Résumé de l'exposé

On présentera le sujet de ce groupe de travail : comprendre l'article de N. Kawazumi Twisted Morita-Mumford classes on braid groups.

Ilaria Mondello
Etablissement de l'orateur
Laboratoire Jean Leray
Date et heure de l'exposé
Lieu de l'exposé
Salle des Séminaires
Résumé de l'exposé

Les espaces stratifiés sont des espaces métriques singuliers qui ont été étudiés d'abord en topologie, et plus récemment d'un point de vue analytique. Nous nous intéressons au problème de Yamabe sur un espace stratifié, c'est-à-dire à l'existence de métriques à courbure scalaire constante. Cela dépend, d'après un résultat de K. Akutagawa, G. Carron et R. Mazzeo, d'un invariant conforme : la constante de Yamabe locale. Nous allons montrer comment il est possible de la calculer en étendant au cadre singulier des résultats de géométrie Riemannienne classique.

Gilles Carron
Etablissement de l'orateur
LMJL
Date et heure de l'exposé
Lieu de l'exposé
Salle des Séminaires
Martin Deraux
Etablissement de l'orateur
Université Joseph Fourier - Grenoble 1
Date et heure de l'exposé
Lieu de l'exposé
Salle des Séminaires
Résumé de l'exposé

On s'intéresse à classifier les variétés de dimension trois qui admettent une uniformisation CR sphérique, c'est-à-dire qui apparaissent comme le bord à l'infini de surfaces hyperboliques complexes. J'expliquerai des constructions géométriques explicites qui montrent qu'une infinité de variétés hyperboliques réelles admettent une uniformisation CR sphérique.