The early universe cosmology can be successfully
described in the theoretical framework of modified gravity and
quintessence. I introduce the Starobinsky and Linde inflationary
models in light of the recent CMB observations by the PLANCK
satellite mission and the BICEP2 telescope. Preheating and reheating
after inflation are briefly reviewed. Some very recent theoretical
results about inflation, leptogenesis, dark matter and dark energy
in the context of N=1 supergravity are outlined.
In a celebrated 1961 paper, Landauer formulated
a fundamental lower bound on the energy dissipated by computation
processes. Since then, there has been many attempts to formalize,
generalize and contradict Landauer's analysis. The situation became
even worse with the advent of quantum computing. In a recent enlightening
article, Reeb and Wolf sets the game into the framework of quantum
statistical mechanics, and finally gave a precise mathematical formulation
of Landauer's bound. I will discuss parts of this analysis and present some
extensions of it that were obtained in a joint work with V. Jaksic.
Cofinancement d'une allocation post-doctorale avec un programme européen dans le cadre du projet :
Définir une homologie de Heegaard Floer en grande dimension et établir un isomorphisme avec une homologie de type « homologie de contact plongée» dans le but de démontrer la conjecture de Weinstein.
Parallel efficient ModulAr tools for multiPhysics and multIscale complEx simulations. Shock waves propagation in complex media.
Outils modulaires scalables pour les simulations complexes multiphysiques et multi-échelles. Application à la propagation d’ondes de choc en milieux complexes
Projet Intégré de Recherche-Formation-Innovation VACARME (VaCaRMe : acronyme de Vaincre les maladies Cardiovasculaires, Respiratoires et Métaboliques).
Coord. : H. Le Marec, Dir. scientifique : R. Redon (Institut du Thorax, Nantes).
Dénomination
Vaincre les maladies cardiovasculaires, respiratoires et métaboliques
We consider compact smooth Riemannian manifolds with boundary of dimension greater than two.
We show that for wave equations, boundary data on the manifold is enough to determine time
dependent and time independent lower order source terms in a variety of geometric settings.
The main technique is the use of the Gaussian beam Ansatz. We briefly discuss the relationship
of the work to recent progress on the Calderon problem.