Séminaire de mathématiques appliquées (archives)

Marie-Hélène Vignal
Etablissement de l'orateur
IMT - Université Toulouse 3
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Ce travail a été réalisé en collaboration avec Giacomo Dimarco (Université de Ferrara) Raphael Loubère (CNRS, Université de Bordeaux) et Victor Michel-Dansac (Insa Toulouse).

Je présenterai un schéma Volumes finis implicite-explicite du second ordre pour le système d'Euler isentropique dans la limite bas Mach. Le schéma proposé est asymptotiquement stable avec une CFL indépendante du nombre de Mach. De plus il dégénère à la limite en une discrétisation consistante d'Euler incompressible.

Bez Nicolas
Etablissement de l'orateur
LMJL
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

L'objectif de cet exposé est de me présenter à l'ensemble du laboratoire. Etant géostatisticien dans une UMR dédiée aux écosystème marins, mon activité récurrente concerne la cartographie. Dans ce cadre, j'aborderai très succinctement les sujets qui m'intéressent actuellement qui ont trait aux approches spatio-temporelles, aux approches SPDE (Stochastic Partial Differential Equation) et à la cartographie des indices de biodiversité par simulations conditionnelles.

Le cœur de mon exposé concernera l'analyse de trajectoires de navires par méthodes HMM (avec inférence par algorithme EM dont nous avons testé la robustesse par simulation-estimation). Ces analyses basées sur des trajectoires individuelles s'ouvrent aujourd'hui à des approches par modèles graphiques pour comprendre les interactions qui se dégagent au sein de flottilles de navires.

En fin d'exposé, j'évoquerai une recherche que je souhaiterais développer autour de la théorie de la Relativité d'Echelle (Laurent Nottale). C'est un thème de recherche pour lequel des collaborations avec des spécialistes de physique-statistique ou des mathématiciens pourraient "probablement" se développer ...

Marcela Szopos
Etablissement de l'orateur
MAP5 - Université Paris Descartes
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Multiscale coupling of nonlinear distributed and lumped fluid flow models is often necessary when modeling complex biological vascular systems. When interested in studying in details a specific segment of the vasculature, usually, to reduce simulations costs, a distributed partial differential equations (PDEs) model is used to simulate the segment of interest, while the rest of the vasculature is approximated using a lumped ordinary differential equations (ODEs) model. We propose a new splitting approach to numerically solve this multiscale problem in an efficient, accurate and affordable manner. The main novelty of the splitting scheme is that it ensures that the energy of the semi-discrete problem mirrors the behavior of the energy of the fully coupled problem. As a result, unconditional stability with respect to the time step choice is ensured without the need of sub-iterating between PDE and ODE sub-steps. We next illustrate the capabilities of this framework by applying it to the development of a multiscale model describing the coupled dynamics of different biofluids in the brain and in the eye.

Bruno Desprès
Etablissement de l'orateur
LJLL - UPMC
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

L'approximation numérique de solutions peu régulières d'équations hyperboliques est un problème notoirement délicat (contrôle des oscillations, phénomène de Gibbs près des discontinuités, limiteurs de pente, ...). Je montrerai comment l'utilisation du Théorème de Lukacs permet de reformuler la question de l'approximation polynomiale d'ordre élevé préservant des conditions de signe: plus généralement il s'agit de rendre compatible des formulations issues de la géométrie algébrique réelle avec les besoins du calcul scientifique. Un nouvel algorithme avec de fortes propriétés de convexité sera détaillé. Une application à la construction d'un schéma avec limiteur illustrera l'approche générale.

Alain Celisse
Etablissement de l'orateur
Université de Lille
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

In this talk we discuss the change-point detection problem when dealing with complex data.

Our goal is to present a new procedure involving positive semidefinite kernels and allowing us for detecting abrupt changes arising in the full distribution of the observations along the time (and not only in their means).

The two-stage procedure we introduce involves dynamic programming and a new $l_0$-type penalty derived from a new concentration inequality applying to vectors in a reproducing kernel Hilbert space. The performance of the resulting change-point detection procedure is theoretically grounded by means of a non-asymptotic model selection result (oracle inequality).

We will also illustrate the practical behavior of our kernel change-point procedure on a wide range of simulated data. In particular we empirically validate our penalty since the resulting penalized criterion recovers the true (number of) change-points with high probability.

We will finally discuss the influence of the kernel on the results in practice.

Fabien Caubet
Etablissement de l'orateur
LMAP - Université de Pau et des Pays de l'Adour
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Dans ce travail, nous considérons le problème inverse de détection d’obstacle avec des données de Cauchy partielles pour l’équation de Laplace. Nous étudions ce problème en utilisant des méthodes d’optimisation de forme en minimisant une fonctionnelle de forme de type Kohn- Vogelius. Afin de pouvoir définir cette fonctionnelle, nous devons dans un premier temps compléter les données de bord. Ainsi, nous commençons par considérer le problème de complétion de données (i.e. le problème de Cauchy) que nous étudions également par minimisation d’une fonctionnelle de type Kohn-Vogelius. Étant donné le caractère mal posé de ce problème de Cauchy, nous utilisons une régularisation de la fonctionnelle d’énergie en ajoutant un terme de pénalisation. Après avoir montré quelques résultats de convergence pour le problème de Cauchy, nous présentons des reconstructions numériques de la solution et de l’obstacle à partir de mesures de bord partielles.

Olivier Bouaziz
Etablissement de l'orateur
Université Paris Decartes
Date et heure de l'exposé
Lieu de l'exposé
Résumé de l'exposé

In this talk we consider the estimation and inference problem of interval censored data. These types of data arise when patients are followed-up at different visits and the exact occurence of the event of interest is unknown. Instead, one only knows that the event has occurred between two time visits. These data also encompass left-censored observations (when the event has occurred before the first visit) and right-censored data (when the event has not yet occurred after the last follow-up time). We study the nonparametric and regression settings by specifying a piecewise constant function for the hazard rate. Treating the true event times of interest as unobserved data, the EM algorithm is implemented. In order to determine the number and locations of the cuts of the hazard function, a L0 penalized likelihood method is used, such that a large grid of cuts is initially implemented and the penalization technique forces two similar adjacent values to be equal. Statistical inference of the model parameters are derived from likelihood theory. The method is illustrated on a dental dataset where 322 patients with 400 avulsed and replanted permanent teeth were followed-up prospectively in the period from 1965 to 1988 at the university hospital in Copenhagen, Denmark. The following replantation procedure was used: the avulsed tooth was placed in saline as soon as the patient was received at the emergency ward. If the tooth was obviously contaminated, it was cleansed with gauze soaked in saline or rinsed with a flow of saline from a syringe. The tooth was replanted in its socket by digital pressure. The patients were then examined at regular visits to the dentist. In this study, we focused on a complication called ankylosis such that the variable of interest is the time from replantation of the tooth to ankylosis. 28% of the data were left censored, 35.75% were interval censored and 36.25% were right censored. A Cox model was implemented on this dataset and showed that the stage of root formation (mature or immature tooth) and the length of extra-alveolar storage time were significantly associated with the risk of experiencing ankylosis.

This is a joint work with Grégory Nuel (DR CNRS, LPSM, Paris 6) and Eva Lauridsen (Department of Pediatric Dentistry and Clinical Genetics, School of Dentistry, University of Copenhagen).