Séminaire de topologie, géométrie et algèbre (archives)

Hisaaki Endo
Etablissement de l'orateur
Tokyo Science University
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

In this short lecture, I will explain the definition of Lefschetz fibrations on 4-manifolds and basic properties of them. In particular, I will describe a classification theorem of Kas and Matsumoto which asserts that there is one to one correspondence between the isomorphism classes of Lefschetz fibrations and the conjugacy classes of monodromy

Federica Fanoni
Etablissement de l'orateur
LAMA - Université Paris-Est Créteil
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Fine curve graphs have been introduced by Bowden, Hensel and Webb to study homeomorphism groups of closed surfaces. A main tool in their work is the fact that fine curve graphs can be approximated by curve graphs of surfaces with punctures. I will talk about joint work with Sebastian Hensel, where we study to which extent the boundary of the fine curve graph can be approximated via curve graphs of surfaces with punctures. I will also discussion of fine curve graph techniques to the study of mapping classes of infinite-type surface.

Hélène Eynard-Bontemps
Etablissement de l'orateur
Institut Fourier - Grenoble
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

An element $g$ of an abstract group $G$ is a distortion element if there exists a finite family $S$ in $G$ such that $g\in\langle S\rangle$ and the word-length of $g^n$ (w.r.t. $S$) grows sublinearly in $n$. This is a very general group theoretic notion, but does it have a dynamical interpretation when $G$ is a group of diffeomorphisms? In this talk, we will focus on diffeomorphisms of the closed interval in different regularities. In particular, we will present some natural obstructions to distortion (such as the presence of hyperbolic fixed points in $C^1$ regularity and the positivity of the so-called asymptotic variation in $C^2$ regularity (and higher)), and we will wonder whether they are the only ones.

Eric Hoffbeck
Etablissement de l'orateur
LAGA (Villetaneuse - Paris 13)
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Le principe fondamental de la topologie algébrique est d'associer des objets algébriques à des objets de nature géométrique ou topologique. Dans cet exposé, nous commencerons par rappeler rapidement la complexité croissante de ces objets algébriques : des nombres, des groupes, des algèbres associatives, puis différents types d'algèbres de plus en plus complexes. Les opérades sont un outil pour mieux comprendre ces algèbres, et mieux les étudier. Par exemple, la construction bar des opérades et la dualité de Koszul permettent de retrouver les complexes d'homologie (Hochschild, Chevalley-Eilenberg, etc) et des constructions similaires dans des contextes plus modernes. Ceux-ci font souvent intervenir des infini-catégories ou des algèbres à homotopie près. Le but final de l'exposé est de présenter la définition des infini-opérades et de leurs algèbres, et de définir des constructions bar associées.

Ceci est un travail en commun avec Ieke Moerdijk.

Rémi Leclercq
Etablissement de l'orateur
LMO - Orsay
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Lagrangian submanifolds exhibit surprising rigidity in view of their small dimension (only half that of the ambient symplectic manifold). A famous manifestation of this rigidity is that some of them cannot be displaced from themselves by any Hamiltonian diffeomorphism or even by any diffeomorphism which preserves the symplectic form. In comparison, any submanifold of the same dimension which is not Lagrangian can be displaced from itself by a Hamiltonian diffeomorphism.

Moreover, that diffeomorphism can be chosen arbitrarily C⁰-small, so that one can wonder whether a Lagrangian L (which can be displaced from itself) admits a neighborhood of Hamiltonian (resp. symplectic) non-displacement. Such a neighborhood W is defined by the property that any Lagrangian obtained from L by a Hamiltonian (resp. symplectic) diffeomorphism, and included in W, must intersect L.

On the one hand, I will give conditions which ensure the existence of such neighborhoods for a large class of Lagrangians. On the other hand, I will construct a Lagrangian which does not admit any, in any symplectic manifold of dimension at least 6. Then, I will discuss several applications of our techniques to the topology of orbits of Lagrangians. This is based on a joint work with Marcelo Attalah, Jean-Philippe Chassé, and Egor Shelukhin.

Thomas Massoni
Etablissement de l'orateur
MIT
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

In the late '90s, Eliashberg and Thurston established a remarkable connection between foliations and contact structures in dimension three: any co-oriented, aspherical foliation on a closed, oriented 3-manifold can be approximated by both positive and negative contact structures. Additionally, if the foliation is taut then its contact approximations are tight. In this talk, I will present a converse result on constructing taut foliations from suitable pairs of contact structures. While taut foliations are rather rigid objects, this viewpoint reveals some degree of flexibility and offers a new perspective on the L-space conjecture. A key ingredient is a generalization of a result of Burago and Ivanov on the construction of branching foliations tangent to continuous plane fields, which might be of independent interest.

Alessio Di Prisa
Etablissement de l'orateur
Scuola Normale Superiore, Pisa
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

We say that a link L in S^3 is negative amphichiral if there exists an orientation-reversing diffeomorphism of S3 that sends every component of L to itself with the opposite orientation. If such a map can be chosen to be an involution, then the link is said to be strongly negative amphichiral. Kawauchi proved that every strongly negative amphichiral link is rationally slice, i.e. it bounds a disjoint collection of disks in a rational homology 4-ball. In this talk, we prove that every negative amphichiral link is rationally slice, extending the aforementioned work of Kawauchi. Our proof relies on a careful analysis of the JSJ decomposition of the link complement of negative amphichiral links. This is joint work in progress with Jaewon Lee (KAIST, Daejeon) and Oğuz Şavk (CNRS, Nantes).

Geoffroy Horel
Etablissement de l'orateur
Université Paris 13
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

By a theorem of Kontsevich and Lambrechts-Volić, the little disks operad is formal in every dimension, meaning that its rational homotopy type is faithfully represented by its cohomology. This theorem has had significant consequences in both high and low-dimensional topology (e.g., Vassiliev invariants, diffeomorphisms of the disk) as well as in deformation theory (e.g., quantization deformation of Poisson manifolds). In my talk, I will review these results and explain a recent result on the equivariant formality of the little disks operad.

This is joint work with Pedro Boavida de Brito and Joana Cirici.

Seungook Yu
Etablissement de l'orateur
LMJL
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

Spectral invariants are essential tools for studying symplectic and contact rigidity, such as non-squeezing problems and camel problems, as well as Hamiltonian dynamics. These invariants have been constructed through various approaches. In this talk, we focus on the Floer-theoretic construction of Legendrian spectral invariants in one-jet bundles.

Typically, Floer theory on contact manifolds, such as one-jet bundles, involves the use of symplectization. However, in this talk, I will introduce the concept of contact instantons, which enables the construction of Legendrian Floer cohomology and its spectral invariants without relying on symplectization.

Robert Cardona
Etablissement de l'orateur
Universitat de Barcelona
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

More than twenty years ago, Etnyre and Ghrist established a connection between Reeb fields in contact geometry and a class of stationary solutions to the 3D Euler equations for ideal fluids. In this talk, we present a new framework that allows assigning contact/symplectic invariants to large sets of time-dependent solutions to the Euler equations on any three-manifold with an arbitrary fixed Riemannian metric, thus broadening the scope of contact topological methods in hydrodynamics. We use it to prove a general non-mixing result for the infinite-dimensional dynamical system defined by the equation and to construct new conserved quantities obtained from spectral invariants in embedded contact homology. This is joint work with Francisco Torres de Lizaur.