On étudie le comportement en temps grand des solutions de l'équation de Schrödinger avec potentiels à valeurs complexes. Dans un premier temps, on s'intéresse aux potentiels à décroissance rapide. On établit les développements de la résolvante au seuil et près des résonances positives. On obtient, sous différentes conditions, les développements en temps grand des solutions en supposant l'existence de résonances positives et d'une résonance et / ou une valeur propre au seuil zéro. Dans un second temps, on s'intéresse aux potentiels à décroissance lente. On établit des estimations de Gevrey de la résolvante aussi que les développements en temps grand des semi-groupes de Schrödinger et de la chaleur avec des estimations sous-exponentielles en temps sur le reste. Ces derniers résultats généralisent les résultats de X. P. Wang au cas où le potentiel vérifie une condition de Viriel au voisinage de l'infini. Ainsi, ces résultats couvrent le cas d'une valeur propre zéro de multiplicité géométrique quelconque.