Séminaire d'analyse (archives)

Kévin Le Balc'h
Etablissement de l'orateur
INRIA et Laboratoire Jacques-Louis Lions
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Je présenterai de nouvelles estimations d’observabilité pour des équations elliptiques non homogènes posées sur un domaine $\Omega$ en 2 D, avec observation sur un sous domaine $\omega$. Pour un potentiel $V$ borné à valeurs réelles, on démontre que le coût de l’observation de l’opérateur $-\Delta + V$ est de l’ordre de $\exp(\|V\|_\infty ^{1/2 + \epsilon})$. La méthode de preuve est inspirée d’un travail récent de Logunov, Malinnikova, Nadirashvili et Nazarov portant sur la conjecture de Landis. Je présenterai les trois grandes idées de la preuve : une construction de domaine perforé basée sur l’ensemble nodal de la solution pour se ramener à un domaine dont la constante de Poincaré est petite, une transformation quasi-conforme pour se ramener à une équation harmonique, et des estimations de Carleman conjuguées à des inégalités de Harnack. Enfin, je présenterai l’application de ces nouveaux résultats au contrôle d’équations elliptiques semi-linéaires, dans l’esprit des travaux de Fernandez-Cara et Zuazua concernant la contrôlabilité à zéro d’équations de la chaleur semi-linéaires. L’exposé sera basé sur un travail en commun avec Sylvain Ervedoza.

Lucas Vacossin
Etablissement de l'orateur
LMO et ENS Ulm
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Dans cet exposé, on s'intéressera à un problème de scattering par des obstacles dans le plan et plus particulièrement, à l'étude des résonances du Laplacien en dehors de ces obstacles (ce sont des valeurs propres généralisées). On présentera un résultat nouveau qui établit l'existence d'un trou spectral. Après quelques rebonds, on se retrouvera très vite au pays des fractales, ce qui nous amènera à faire une excursion dans le monde des surfaces hyperboliques. On y évoquera un outil récemment développé dans ce contexte et central dans la preuve du trou spectral : un principe d'incertitude fractal. Enfin, si le temps le permet, nous finirons chez le boulanger (et sa transformation) pour tâcher d'expliquer sur un modèle jouet les tenants de la preuve.

Victor ARNAIZ SOLORZANO
Etablissement de l'orateur
LMJL
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

In this talk, I will present new results concerning the study of the resolvent of the damped-wave operator associated with the sub-elliptic Laplacian known as Baouendi-Grushin operator on the two-dimensional flat torus. From different hypothesis on the geometry of the damping region and the Hölder regularity of the damping term, I will show sharp resolvent estimates of the associated non-selfadjoint operator on the real axis. As an application, sharp energy-decay-rates of the damped-wave equation are obtained. The proofs are based on the study of two-microlocal semiclassical measures, normal form reductions and constructions of quasimodes in different parts of the phase-space.

This work has been done in collaboration with Chenmin Sun. Reference: arXiv:2201.08189.

Jérémy Martin
Etablissement de l'orateur
IRMAR
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Depuis des travaux récents, les principes d’incertitude ont gagné en intérêt dans la recherche de conditions géométriques pour le contrôle d’équations d’évolution linéaires. Dans cet exposé, nous nous intéresserons à l’obtention de principes d’incertitude valables dans des espaces de Gelfand-Shilov généraux. Nous discuterons notamment du cas des espaces de Gelfand-Shilov standards $S\nu^\mu$ où les deux paramètres $\mu,\nu>0$ satisfont $\mu+\nu \geq 1$ et mesurent respectivement la décroissance en espace et en Fourier des fonctions de $S\nu^\mu$. Ces principes d’incertitude nous permettrons d’obtenir des conditions géométriques suffisantes pour la contrôlabilité d’équations d’évolution régularisants dans des espaces de Gelfand-Shilov. Un des objectifs sera de comprendre comment la géométrie de l’ensemble de contrôle est reliée aux deux paramètres $\mu$ et $\nu$. En particulier, ces résultats s’appliqueront aux équations d’évolution associées à des opérateurs de Shubin anisotropes fractionnaires.

Frédéric Herau
Etablissement de l'orateur
LMJL
Date et heure de l'exposé
Lieu de l'exposé
Résumé de l'exposé

We present some results on the spectral analysis of the semiclassical Neumann magnetic Laplacian on a smooth bounded domain in dimension three. When the magnetic field is constant and in the semiclassical limit, we establish a four-term asymptotic expansion of the low-lying eigenvalues, involving a geometric quantity along the apparent contour of the domain in the direction of the field. In particular, we prove that they are simple.

Tristan Robert
Etablissement de l'orateur
Université de Lorraine
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

La construction de mesures invariantes pour des EDP Hamiltoniennes sur des domaines bornés permet de fournir une description qualitative du flot en temps long. Après avoir expliqué quelques méthodes classiques pour construire ces mesures et montrer leur invariance par le flot Hamiltonien, on s'intéressera au cas particulier de l'équation de Schrödinger fractionnaire avec non-linéarité exponentielle afin d'illustrer le rôle de la dispersion ainsi que les conditions nécessaires sur la mesure pour implémenter les méthodes précédentes.

Matthieu Léautaud
Etablissement de l'orateur
LMO
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

On considère une équation de transport par un champ de gradient avec une petite perturbation visqueuse. On étudie des propriétés d’observabilité uniforme dans la limite (singulière) de viscosité évanescente. On montre avec une série d’exemples que le temps minimal pour l’observabilité uniforme peut être bien plus grand que le temps minimal pour l’équation limite. On montre aussi que les deux temps minimaux coïncident pour les solutions positives. Il s'agit d'un travail en collaboration avec Camille Laurent.

Thierry Daude
Etablissement de l'orateur
LMB
Date et heure de l'exposé
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

Peut-on déterminer la métrique d'un trou noir en observant des ondes aux infinis de la variété ? Dans cet exposé, je répondrai par la positive à cette question à travers l'exemple de trous noirs de Kerr-Newmann-de-Sitter, une classe de solutions exactes des équations d'Einstein décrivant un trou noir massif, électriquement chargé et en rotation. Dans un premier temps, je décrirai brièvement la géométrie de ces espaces-temps, puis la matrice de diffusion associée à des champs de Dirac sans masse se propageant dans cette variété. Dans une deuxième partie, je montrerai que la matrice de diffusion à une énergie fixée permet de déterminer uniquement un trou noir de Kerr-Newmann-de-Sitter. Ce résultat a été obtenu en collaboration avec François Nicoleau.

Benoît Grébert
Etablissement de l'orateur
LMJL
Date et heure de l'exposé
Lieu de l'exposé
salle de séminaire
Résumé de l'exposé

Nous définissons une classe d'opérateurs discrets mimant les propriétés standards des opérateurs pseudo-différentiels. En particulier, nous pouvons définir la notion d'ordre et de régularité, et nous retrouvons la propriété fondamentale selon laquelle le commutateur de deux opérateurs discrets gagne un ordre de régularité. Nous montrons que les opérateurs différentiels standards agissant sur des fonctions périodiques, les opérateurs aux différences finies et les méthodes pseudo-spectrales entièrement discrètes entrent dans cette classe d'opérateurs pseudo-différentiels discrets. A titre d'exemples d'applications pratiques, nous revisitons les estimations d'erreur standard pour la convergence des méthodes de splitting. De plus, nous donnons un exemple de constructions de préconditionneurs inspirées de l'analyse de la forme normale pour traiter la question similaire pour des cas plus généraux. (travail en collaboration avec Erwan Faou)

Léo Bigorgne
Etablissement de l'orateur
IRMAR
Date et heure de l'exposé
Lieu de l'exposé
salle de séminaire
Résumé de l'exposé

La méthode des champs de vecteurs est une approche robuste permettant d'obtenir des estimations de décroissance pour les solutions d'équations d'ondes ou de Vlasov. Elle s'appuie sur le caractère géométrique de ces équations et a permis de traiter de nombreux problèmes non-linéaires. Nous verrons ici comment l'adapter à l'équation de Vlasov sans masse linéaire sur un trou noir de type Schwarzschild. En comparaison avec l'espace-temps de Minkowski, qui est une variété plate, les difficultés proviennent du plus petit nombre de symétries, de l'horizon des évènements ainsi que des trajectoires piégées.