In dimensions greater than four, the classification of smooth manifolds is an unsolvable problem, but manifolds can still be classified up to cobordism.
From this perspective, Liouville cobordisms provide a powerful tool for studying contact manifolds in high dimensions. In this talk, I will explain how Liouville cobordisms can be used to construct exact locally conformally symplectic (LCS) manifolds, in particular the LCS mapping tori associated with a contactomorphism. I will then use this construction to study the isomorphism classes of LCS mapping tori and explore their connections with the contact mapping class group.