Séminaire d'analyse (archives)

Lieux de sortie les plus probables pour la dynamique de Langevin sur-amortie

Nom de l'orateur
Dorian Le Peutrec
Etablissement de l'orateur
Département de Mathématiques, Faculté des sciences d'Orsay
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

On s’intéresse dans cet exposé au processus de Langevin sur-amorti à basse température $ h\to 0 $ associé à un potentiel $ f $ de Morse dans un domaine borné $ \Omega $. Le générateur infinitésimal associé est alors donné par l’opérateur différentiel semi-classique $ L = \nabla f\cdot \nabla - \frac h 2 \Delta $ qui est, à conjugaison près, un Laplacien de Witten.

Valeurs propres de Robin sur des domaines à coins

Nom de l'orateur
Konstantin Pankrashkin
Etablissement de l'orateur
Université Paris-Sud
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

Soit U un ouvert borné du plan. On étudie les valeurs propres du Laplacien dans U avec les conditions de Robin Dn u=A u où Dn est la dérivée normale sortante et A>0 est un grand paramètre. On s'intéressera au régime asymptotique quand le paramètre A devient grand. Plusieurs auteurs ont étudié ce problème quand U est à bord lisse: dans ce cas le comportement des valeurs propres est géré par l'opérateur effectif T-AK agissant sur le bord de U, où T est le Laplacien 1D et K est la courbure.

Théorie de la diffusion pour des systèmes quantiques dissipatifs

Nom de l'orateur
Jérémy Faupin
Etablissement de l'orateur
Institut Elie Cartan de Lorraine
Université de Lorraine (site de Metz)
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

Théorie de la diffusion pour des systèmes quantiques dissipatifs

Stabilité spectrale et linéaire de problèmes de Dirac non linéaires

Nom de l'orateur
Nabile Boussaïd
Etablissement de l'orateur
Laboratoire de Mathématiques de Besançon
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

Le but de mon exposé est de présenter des résultats obtenus avec Andrew Comech (Texas A&M) dans l’analyse de la stabilité asymptotique des états stationnaires de modèles de Dirac non linéaires.

Nous analysons par des méthodes de continuation unique et de bifurcation l’apparition d’instabilités linéaires depuis la limite non relativiste.

Dispersion and the Dirac operator

Nom de l'orateur
Anne-Sophie de Suzzoni
Etablissement de l'orateur
LAGA, Université Paris XIII
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

In this talk, I will present some aspects of dispersion for the Dirac operator. I will start by partially reviewing what is known for the Dirac operator in a Minkowkski space-time. Then, I will introduce the Dirac operator in a curved space-time, and present a result of dispersion for specific cases such as assymptotically flat or warped product geometries. This is a joint work with F. Cacciafesta (Padova).

Résonances et revêtements des surfaces géométriquement finies

Nom de l'orateur
Frédéric Naud
Etablissement de l'orateur
Université d'Avignon
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

Dans cet exposé on rappellera les résultats classiques sur le trou spectral des revêtements finis des variétés Riemaniennes compactes et le lien avec le spectre des graphes. On montrera ensuite qu'un phénomène analogue se produit lorsque l'on étudie les résonances de revêtement finis de surfaces hyperboliques géométriquement finies.

Randomisation de fonctions propres et inégalités de Bernstein

Nom de l'orateur
Rafik Imekraz
Etablissement de l'orateur
Institut de Mathématiques de Bordeaux
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

On présente quelques résultats qui permettent d'améliorer, d'un point de vue probabiliste, les injections de Sobolev de certains opérateurs elliptiques. En l'occurrence, on s'intéressera à l'opérateur de Laplace-Beltrami sur une variété compacte et au Laplacien plus un potentiel confinant sur R^d (comme l'oscillateur harmonique).

Survol semi-classique du laplacien magnétique

Nom de l'orateur
Nicolas Raymond
Etablissement de l'orateur
IRMAR, University of Rennes 1
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

Cet exposé survolera de récentes avancées relatives à la description du spectre discret du laplacien magnétique, dans la limite semi-classique. Il atterrira avec la description de quelques résultats en dimension deux : les formes normales de Birkhoff, issues d’une collaboration avec S. Vu Ngoc, et les constructions BKW, obtenues le mois dernier avec Y. Bonthonneau

Compactness of the resolvent for the Witten Laplacian

Nom de l'orateur
Wei-Xi Li
Etablissement de l'orateur
Wuhan University, School of Mathematics and Statistics
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

In this paper we consider the Witten Laplacian on 0-forms and give sufficient conditions under which the Witten Laplacian admits a compact resolvent. These conditions are imposed on the potential itself, involving the control of high order derivatives by lower ones, as well as the control of the positive eigenvalues of the Hessian matrix. This compactness criterion for resolvent is inspired by the one for the Fokker-Planck operator.

Quelques résultats de régularité pour les minimiseurs de type Mumford-Shah, en dimension 2 et 3

Nom de l'orateur
Antoine Lemenant
Etablissement de l'orateur
Laboratoire Jacques Louis Lions, Université Paris Diderot - Paris 7
Lieu de l'exposé
Salle Éole
Date et heure de l'exposé

Je commencerai par une revue rapide, introductive et historique sur le problème de Mumford-Shah, puis je présenterai 2 résultats nouveaux. L’un sur la rigidité des minimiseurs globaux en dimension 3 dont l‘ensemble singulier est contenu dans un demi-plan, et l’autre en dimension 2 sur un problème différent qui a été résolu en l’interprétant comme un problème dual à Mumford-Shah.