c'est une conjecture d'Arnol'd au sujet des singularités de la projection sur la sphère S^2 d'une courbe Legendrienne dans le projectivisé du cotangent de S^2. Elle dit qu'un déformation Hamiltonienne générique de la fibre au-dessus d'un point de S^2 a au moins trois cusps. On en expliquera une preuve qui utilise la théorie microlocale des faisceaux de Kashiwara et Schapira, après quelques rappels sur les faisceaux.