Étant donnés deux convexes fermés proprement immergés dans une variété riemannienne de courbure strictement négative, nous montrons l'équidistribution (avec terme de reste), dans leurs fibrés normaux rentrants et sortants, des vecteurs tangents aux extrémités de leurs perpendiculaires communes de longueur tendant vers l'infini. Nous en déduisons par exemple une formule asymptotique pour le nombre de composantes connexes du domaine de discontinuité d'un groupe kleinéen quand leur diamètre tend vers 0. Ceci est un travail en commun avec Jouni Parkkonen.