Je vais présenter des exemples de sous-groupes discrets de PU(2,1), le groupe des isométries holomorphes du plan hyperbolique complexe. Ce dernier peut-être vu comme la boule unité de C^2, et apparaît donc comme une généralisation naturelle du disque de Poincaré, ou de l'espace hyperbolique réel de dimension 3. Je m'intéresserai principalement aux groupes de surfaces. Si le temps le permet j'évoquerai certains exemples de structures CR sphériques sur les variétés de dimension 3 associés.