Séminaire de topologie, géométrie et algèbre (archives)

Baptiste Chantraine et Paolo Ghiggini
Etablissement de l'orateur
Université de Nantes
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

Nous parlerons d'un travail joint avec Roman Golovko et Georgios Rizell où l'on démontre des restrictions fortes sur la topologie des cobordismes lagrangiens d'une variété legendrienne vers elle-même lorsque les variété legendriennes considérées ont des augmentations.

Birgit Richter
Etablissement de l'orateur
Université d'Hambourg
Date et heure de l'exposé
Lieu de l'exposé
Salle Eole
Résumé de l'exposé

For commutative algebras there are three important homology theories, Harrison homology, Andr\'e-Quillen homology and Gamma-homology. In general these differ, unless one works with respect to a ground field of characteristic zero.

I will explain why the analogues of these homology theories agree in the category of pointed commutative monoids in symmetric sequences, aka pointed commutative shuffle algebras and I'll give examples of such algebras.

In addition, there is a natural model category structure on the category of pointed dg commutative shuffle algebras and this is Quillen equivalent to the model category of pointed simplicial commutative shuffle algebras.

Gwenael Massuyeau
Etablissement de l'orateur
Université de Strasbourg
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

Les "crochets doubles de Poisson" sur les algèbres sont des versions non-commutatives des crochets de Poisson qui ont été introduites par Van den Bergh. L'intersection de courbes sur une surface à bord définit un crochet double sur l'algèbre de son groupe fondamental, qui raffine le crochet de Goldman ; nous reconstruisons ainsi la structure quasi-Poisson d'Alekseev, Kosmann-Schwarzbach & Meinrenken sur la variété des représentations linéaires de ce groupe. En dimension n>2, et en utilisant les idées de la topologie des cordes de Chas & Sullivan, nous obtenons un crochet double de Gerstenhaber sur l'homologie de l'espace des lacets d'une n-variété à bord. (Travail en collaboration avec Vladimir Turaev.)

Alexander Zimmermann
Etablissement de l'orateur
Université de Picardie
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

Le théorème de Noether-Deuring classique montre que sous certaines conditions deux modules sont isomorphes si et seulement si ils le sont après élargissement des scalaires. Nous proposons un théorème analogue pour les catégories dérivées bornées des modules.

Naim Zenaidi
Etablissement de l'orateur
Université d'Uppsalla
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

Après avoir défini la notion de produit de contact et montré que les graphes généralisés de contactomorphismes donnent lieu à des sous-variétés legendriennes de celui-ci, nous expliquerons comment définir l'homologie de contact legendrienne dans ce contexte. J'expliquerai le lien entre les générateurs de celle-ci est les points translatés des contactomorphismes (tels qu'étudiés par M. Sandon). Nous expliquerons comment des calculs dans le cas hypertendu permettent d'estimer le nombre de ces points.

Will Merry
Etablissement de l'orateur
ETH Zurich
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

Joint work with Peter Albers and Urs Fuchs. In 2000 Eliashberg-Polterovich introduced the natural notion of orderability of contact manifolds; that is, the (non)existence of positive loops of contactomorphisms. I will explain how one can study orderability questions using the machinery of Rabinowitz Floer homology. We establish a link between orderable and hypertight contact manifolds, and show that the Weinstein Conjecture holds (i.e. there exists a closed Reeb orbit) whenever there exists a positive (not necessarily contractible) loop of contactomorphisms.

Emmanuel Ferrand
Etablissement de l'orateur
Université Paris 6
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaire
Résumé de l'exposé

$dU=TdS-PdV$. Cette formule évoque à la fois le premier principe de la thermodynamique et une forme différentielle "de contact", dans l'espace de dimension 5. Par ailleurs, se cache derrière des notions telles que l'"enthalpie" où l'"énergie libre" l'idée de la transformation de Legendre... Dans cet exposé élémentaire, je vais tenter de clarifier ce faisceau de relations, en partant d'observations qui remontent, au moins, à René Thom et V.I. Arnold. Ce sera un prétexte pour passer en revue différentes incarnations et applications de cette "transformation de Legendre".

Michael Brandenbursky
Etablissement de l'orateur
Max Planck Institute for Mathematics (Bonn)
Date et heure de l'exposé
Lieu de l'exposé
Salle des Séminaire
Résumé de l'exposé

Quasi-morphisms on a group are real-valued functions which satisfy the homomorphism equation "up to a bounded error". They are known to be a helpful tool in the study of the algebraic structure of non-Abelian groups. After giving a brief introduction to the subject, I will discuss constructions relating: a) knots, braid groups, mapping class groups, b) interesting metrics on groups of area-preserving diffeomorphisms of surfaces, c) quasi-morphisms on groups of all such diffeomorphisms.

No previous knowledge of the subject will be assumed.

Roger Casals
Etablissement de l'orateur
Instituto de Ciencias Matemáticas, Madrid.
Date et heure de l'exposé
Lieu de l'exposé
Salle des Séminaire
Résumé de l'exposé

The symmetries of the standard contact structure of a sphere generate families of contact structures. There exists a Serre fibration relating the space of contact structures and the group of contactomorphisms. The homotopy exact sequence for this fibration is studied and the non--triviality of certain elements in the homotopy groups of the contactomorphism group is concluded. Part of the argument applies to $3$--Sasakian manifolds due to their quaternionic symmetries. We comment on an alternative approach to the detection of non--triviality through the definition of a series of indices generalizing the Maslov index in the symplectic case.

Andy Wand
Etablissement de l'orateur
Université de Nantes
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé

A well known result of Giroux tells us that isotopy classes of contact structures on a closed three manifold are in one to one correspondence with stabilization classes of open book decompositions of the manifold. We will introduce a stabilization-invariant property of open books which corresponds to tightness of the corresponding contact structure. We will mention applications to the classification of contact 3-folds, and also to the question of whether tightness is preserved under Legendrian surgery.